79 research outputs found

    SPECTRAL DECOMPOSITION OF VERTICAL GROUND REACTION FORCE CURVES

    Get PDF
    INTRODUCTION - The vertical ground re- action force component typically has two peaks. The first peak (impact peak) is caused by the impact between the foot and the ground while the lower frequency second peak (active peak) is caused by the vertical braking of the body followed by vertical push-off. Bobbert et al. (1991) pro- posed a method of decomposing the VGRF into the contribution of the support leg and the rest of the body by double differentiation of segment center of mass position data. This decomposition allowed them to determine the magnitude of the impact peak independent of the rest of the curve. The purpose of this study was to investigate a method of decomposing the VGRF curve that does not require differentiation of position data. METHODOLOGY - Five male recreational runners completed 5 trials in 3 different run- ning shoes that differed only in the density of the midsole material. VGRF data were recorded from a force platform at 1000 Hz using an analogue to digital converter. A Fourier transform was performed on each trial An inverse transform was then per- formed twice - once using the frequencies below 3 Hz and once using the frequencies above 3 Hz. Figure 1 illustrates a typical decomposition of the force curve. Peak (PK) and time to peak (TPK) values were recorded for each curve of the decomposed VGRF curve. RESULTS AND DISCUSSION - The magnitudes and times of the impact and active peaks for the decomposed VGRF are presented in Table 1. The impact peak for the soft shoe had a greater magnitude than the medium or hard shoes. This may indi- cate that this shoe midsole experienced maximum compression or that the subjects perceived the soft midsole and adjusted their kinematics. There were essentially no differences in the active PK between the soft, medium and hard midsoles. Table 1. Mean values for decomposed VGRF variables. Midsole Soft Medium Hard Impact PK 240.1 212.8 238.7 Impact TPK 28.3 26.1 26.6 Active PK 1241.2 1233.4 1244.7 Active TPK 107.9 108.7 104.0 Since the impact peak component is of a higher frequency than the active compo- nent, the decomposed VGRF curves are comparable lo the curves of Bobbert et el. (1991). These results indicate that this pro-cedure can be used to separate the true impact characteristics of the VGRF from the remainder of the curve. REFERENCES Bobbert, M.F. et al. (1991). Calculation of vertical ground reaction force estimates during running from positional data. J Biomech, Vol 24: 12 pp. 1095-1 105

    Static stretching of the hamstring muscle for injury prevention in football codes: a systematic review

    Get PDF
    Purpose: Hamstring injuries are common among football players. There is still disagreement regarding prevention. The aim of this review is to determine whether static stretching reduces hamstring injuries in football codes. Methods: A systematic literature search was conducted on the online databases PubMed, PEDro, Cochrane, Web of Science, Bisp and Clinical Trial register. Study results were presented descriptively and the quality of the studies assessed were based on Cochrane’s ‘risk of bias’ tool. Results: The review identified 35 studies, including four analysis studies. These studies show deficiencies in the quality of study designs. Conclusion: The study protocols are varied in terms of the length of intervention and follow-up. No RCT studies are available, however, RCT studies should be conducted in the near future

    Dynamic 3D shape of the plantar surface of the foot using coded structured light:a technical report

    Get PDF
    The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Methods Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. Results The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). Conclusion The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environment

    The natural history and management of hamstring injuries

    Get PDF
    Hamstring injuries in sport can be debilitating. The anatomical complexity of this muscle makes uniform assessment of injury epidemiology difficult and insures that post-injury management strategies must be individually focused. This article reviews the anatomy of the hamstring, its role in athletic movement, common mechanisms of injury, and management guidelines with the goal of return into sporting activity in mind

    Changes in joint coupling and variability during walking following tibialis posterior muscle fatigue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tibialis posterior muscle is believed to play a key role in controlling foot mechanics during the stance phase of gait. However, an experiment involving localised tibialis posterior muscle fatigue, and analysis of discrete rearfoot and forefoot kinematic variables, indicated that reduced force output of the tibialis posterior muscle did not alter rearfoot and forefoot motion during gait. Thus, to better understand how muscle fatigue affects foot kinematics and injury potential, the purpose of this study was to reanalyze the data and investigate shank, rearfoot and forefoot joint coupling and coupling variability during walking.</p> <p>Methods</p> <p>Twenty-nine participants underwent an exercise fatigue protocol aimed at reducing the force output of tibialis posterior. An eight camera motion analysis system was used to evaluate 3 D shank and foot joint coupling and coupling variability during treadmill walking both pre- and post-fatigue.</p> <p>Results</p> <p>The fatigue protocol was successful in reducing the maximal isometric force by over 30% and a concomitant increase in coupling motion of the shank in the transverse plane and forefoot in the sagittal and transverse planes relative to frontal plane motion of the rearfoot. In addition, an increase in joint coupling variability was measured between the shank and rearfoot and between the rearfoot and forefoot during the fatigue condition.</p> <p>Conclusions</p> <p>The reduced function of the tibialis posterior muscle following fatigue resulted in a disruption in typical shank and foot joint coupling patterns and an increased variability in joint coupling. These results could help explain tibialis posterior injury aetiology.</p

    A New Direction to Athletic Performance: Understanding the Acute and Longitudinal Responses to Backward Running

    Get PDF
    Backward running (BR) is a form of locomotion that occurs in short bursts during many overground field and court sports. It has also traditionally been used in clinical settings as a method to rehabilitate lower body injuries. Comparisons between BR and forward running (FR) have led to the discovery that both may be generated by the same neural circuitry. Comparisons of the acute responses to FR reveal that BR is characterised by a smaller ratio of braking to propulsive forces, increased step frequency, decreased step length, increased muscle activity and reliance on isometric and concentric muscle actions. These biomechanical differences have been critical in informing recent scientific explorations which have discovered that BR can be used as a method for reducing injury and improving a variety of physical attributes deemed advantageous to sports performance. This includes improved lower body strength and power, decreased injury prevalence and improvements in change of direction performance following BR training. The current findings from research help improve our understanding of BR biomechanics and provide evidence which supports BR as a useful method to improve athlete performance. However, further acute and longitudinal research is needed to better understand the utility of BR in athletic performance programs

    Review of methods used by chiropractors to determine the site for applying manipulation

    Get PDF
    Background: With the development of increasing evidence for the use of manipulation in the management of musculoskeletal conditions, there is growing interest in identifying the appropriate indications for care. Recently, attempts have been made to develop clinical prediction rules, however the validity of these clinical prediction rules remains unclear and their impact on care delivery has yet to be established. The current study was designed to evaluate the literature on the validity and reliability of the more common methods used by doctors of chiropractic to inform the choice of the site at which to apply spinal manipulation. Methods: Structured searches were conducted in Medline, PubMed, CINAHL and ICL, supported by hand searches of archives, to identify studies of the diagnostic reliability and validity of common methods used to identify the site of treatment application. To be included, studies were to present original data from studies of human subjects and be designed to address the region or location of care delivery. Only English language manuscripts from peer-reviewed journals were included. The quality of evidence was ranked using QUADAS for validity and QAREL for reliability, as appropriate. Data were extracted and synthesized, and were evaluated in terms of strength of evidence and the degree to which the evidence was favourable for clinical use of the method under investigation. Results: A total of 2594 titles were screened from which 201 articles met all inclusion criteria. The spectrum of manuscript quality was quite broad, as was the degree to which the evidence favoured clinical application of the diagnostic methods reviewed. The most convincing favourable evidence was for methods which confirmed or provoked pain at a specific spinal segmental level or region. There was also high quality evidence supporting the use, with limitations, of static and motion palpation, and measures of leg length inequality. Evidence of mixed quality supported the use, with limitations, of postural evaluation. The evidence was unclear on the applicability of measures of stiffness and the use of spinal x-rays. The evidence was of mixed quality, but unfavourable for the use of manual muscle testing, skin conductance, surface electromyography and skin temperature measurement. Conclusions: A considerable range of methods is in use for determining where in the spine to administer spinal manipulation. The currently published evidence falls across a spectrum ranging from strongly favourable to strongly unfavourable in regard to using these methods. In general, the stronger and more favourable evidence is for those procedures which take a direct measure of the presumptive site of care– methods involving pain provocation upon palpation or localized tissue examination. Procedures which involve some indirect assessment for identifying the manipulable lesion of the spine–such as skin conductance or thermography–tend not to be supported by the available evidence.https://doi.org/10.1186/2045-709X-21-3

    Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy

    Get PDF
    corecore